Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-(Butane-1,4-diyldithio)bis(5-phenyl-1,2,4-triazine)

Li-Rong Wen,* Jian-Xia Zhou and En-Tao Sun

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's
Republic of China
Correspondence e-mail: wenlirong@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.125$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{~S}_{2}$, the molecule lies on a centre of inversion and the triazine ring makes a dihedral angle of $8.47(2)^{\circ}$ with the benzene ring.

Comment

1,2,4-Triazine derivatives possess a broad spectrum of biological activity (Said, 2003) and play an important role in the syntheses of heterocyclic compounds (Taylor et al., 1987). In the course of our systematic studies aimed at the synthesis of new symmetrical 1,2,4-triazine compounds, the title compound, (I), was obtained.

(I)

The molecule of (I) (Fig. 1) lies on a centre of inversion. The triazine ring is essentially planar, the largest deviation from the mean plane being 0.032 (2) \AA for atom C9. The dihedral angle between the triazine ring and the benzene ring is 8.47 (2) ${ }^{\circ}$. Bond distances and angles of the triazine ring are as expected for this type of compound (Wen et al., 2006).

Experimental

1,4-Dibromobutane $(0.432 \mathrm{~g}, 2 \mathrm{mmol})$ was added to a solution of 5-phenyl-1,2,4-triazine-3-thiol $(0.756 \mathrm{~g}, \quad 4 \mathrm{mmol}), \mathrm{KOH}(0.224 \mathrm{~g}$, 4 mmol) and tetraethylammonium bromide (0.05 g) in aqueous ethanol ($10 \mathrm{ml}, 50 \%$). The reaction mixture was refluxed for 6 h , then poured into water $(100 \mathrm{ml})$. The resulting precipitate was collected and recrystallized from EtOH/THF (5:1) to give (I). Single crystals suitable for X-ray analysis were obtained as colourless blocks by slow evaporation of a solution in $\mathrm{EtOH} / \mathrm{THF}$ (5:1).

Figure 1
Molecular structure of (I) showing displacement ellipsoids at the 35% probability level. H atoms are shown as spheres of arbitrary radii. Suffix A denotes atoms related by the symmetry operator $(1-x, 1-y, 1-z)$.

Received 12 October 2006 Accepted 30 October 2006

organic papers

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{~S}_{2}$
$M_{r}=432.56$
Monoclinic, $P 2_{1} / c$
$a=10.323(5) \AA$
$b=11.434(6) \AA$
$c=9.562(5) \AA$
$\beta=113.553(8)^{\circ}$
$V=1034.6(9) \AA^{3}$

Data collection
Bruker APEX-II CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.916, T_{\max }=0.978$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.126$
$S=1.03$
2153 reflections
136 parameters
H-atom parameters constrained
$Z=2$
$D_{x}=1.389 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.32 \times 0.16 \times 0.08 \mathrm{~mm}$

5764 measured reflections 2153 independent reflections 1434 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=26.6^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0612 P)^{2}\right. \\
& +0.2027 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.32 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{\AA^{-3}}
\end{aligned}
$$

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and allowed to ride during subsequent refinement with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the National Natural Science Foundation of China (20572057).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Said, M. M. (2003). Egypt. J. Biomed. Sci. 11, 46-59.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Taylor, E. C., Macor, J. E. \& Pont, J. L. (1987). Tetrahedron, 43, 5145-5158.
Wen, L. R., Wang, X., Li, M. \& Zhai, L. N. (2006). Chin. J. Struct. Chem. 25, 485-490.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

